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The use of aggregate data in regression 
analysis is pervasive in such fields of study as 
public policy, demography, political science, 
economics, and sociology. For several decades, a 
debate on the proper specification of aggregate 
models, so that inferences could be made about 
micro -level relationships from the macro -level 
estimators, has permeated literature in these 
fields. For most investigators, this question 
remains unresolved or insoluble, though there 
have been continuous refinements of techniques 
designed to mitigate aggregation problems (Irwin 
& Lichtman, 1976; Smith, 1977). 

This paper does not focus upon macro to micro 
inference directly, rather it is concerned with 
the interpretation of the standard measure of 
goodness -of -fit for regression analysis- -the mul- 
tiple- correlation- squared (R2). The importance of 
the R2 as a test statistic is the rationale for 
exploring its interpretation when using macro - 
level data for analyses employing least squares 
regression. However, it is acknowledged that it 
is not possible to divorce substantive problems 
of model formation from the methodological ques- 
tions concerning technique. Thus, a review of 
previous work on aggregate allows one to view the 
question holistically, rather than as solely a 
problem of calculation or reading a computer 
printout. 

The previous works on analyzing grouped data 
can for heuristic purposes be divided into two 
separate development paths. The two perspectives 
can be illustrated by the seminal work of Robinson 
(1950) in sociology and of Prais and Aitchison 
(1954) in economics. As has been previously not- 
ed, Robinson's "ecological correlation" approach 
and the grouping in linear models approach of 
Prais and Aitchison complement each other. A re- 
view of the aggregation issue from these two per- 
spectives will be presented in the next two sec 
tions. 

The importance of the R2 is that it is often 
employed as a measure of the power and amount of 
explanatory worth of a particular specification. 
Even though this paper does not focus on model 
building, the use of R2 in model selection with 
aggregate data does warrant considering specifica- 
tion impact on R2. 

Analysis of Covariance Approach to Aggregation 

The analysis of variance method is illustrat- 
ed by partitioning the sum of squares about the 
mean for Y (the dependent variable) into "explain- 
ed" sums of squares and residual sum of squares. 
Following the notation of Johnston (1972:192 -207) 
a simple model is defined as 

y = X + u (1) 

Where the sample y is a column vector (n x 1) of 
micro-level observations composed of p sub -vectors 
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the groups. The independent variables 
are the X matrix (n x k) divided into p groups 
and the first column is all ones to allow a con- 
stant term, while is a vector (k x 1) of the 
estimators. The vector u contains stochastic 
noise values where E(u) =0. To incorporate the 
possible effect of the p groups, then an expanded 
model is 

y=Da+Xß+u, (2) 

which allows the p groups to have different con- 
stant terms, thus a is a vector of (p - 1) ele- 
ments. The D' matrix is of dummn variables with 
order (Mp x [p -1]), where M = is the sum 
of the number of observations in each p, for in- 
stance: 

1 1 0 0 0 0 0 0 0 
D' = 0 0 1 1 1 0 0 0 0 

0 0 0 0 0 1 1 1 1 
(3) 

Remembering that D has p groups, with each p hav- 
ing m elements. To estimate (1) above, start 
with 

y=Xß+s, 

which can be estimated by 

= (X'X) 

where s gives the least square residuals. An 
additional relationship may be derived as, 

(4) 

(5) 

y'y = B'X'y + s's (6) 

Returning to (2) above, the estimation of 

y= Dot +Xß +e (7) 

becomes 

-1 D'y D D X D 
X'y 

and from (6) above 

y'y = â'D'y + ß'X'y + e'e. 

(8) 

(9) 

The e vector contains residuals for (7). 

To calculate the R2 for analysis of the co- 
variance problem, it is necessary to define 
(Thiel, 1971, p. 176) 

1 -R2 = 

y'Ay 

where 

A V' 
N 

(10) 

(u) 

with V a vector n ones. The A matrix is to trans- 
form to deviations from the mean. 



If a standard analysis of covariance were 
desired, the terms given in Table 1 would be the 
appropriate residual sum of squares to use for 
an F -test after converting by degrees of freedom 
to determine mean squares. However, our interest 
is in the R2's that would be associated with the 
differing levels. The micro-level R2 is for the 
"Total" formul . Compare this to the macro -level 
or aggregate which has an additional factor of 
'D'y -- indicating that the value of vector 
would inflate the R2 to the extent that it is re- 
lated to y. When is vector of zeros or near 
zeros it could be concluded that the grouping 
factor had no independent effect on the dependent 
variables and the between groups R2 would equal 
the total R2. To restate the above, if the 
grouping is random, then the between groups R2 
is an unbiased estimate of the total R2 -- though 
not as efficient as the total R2 estimate (Cramer, 

1964). The experimental statistician would note 
the treatment groups) had no significant 
effect. There are undoubtedly many investigators 
using aggregated data whose research would be 
much easier if the grouping was random. Grunfeld 
and Griliches (1960) noted the phenomenon of the 
higher R2 that was often found with grouped data 
and referred to it as a "synchronization" effect. 
As a historical note, Gehkel and Bichel (1934), 
Thorndike (1939), and Yule and Kendall (1950) 
observed the same problem. At the time there 
no clear explanation except the intuitive one 
that "grouping" on substantive factors caused this 
to happen. The formula in Table 1 clearly shows 
that what is happening is that the additional 
variance is accounted for by the grouping estima- 
tors. Thus, the gain in the R2 is not due to 
better data but simply the contribution of the 
grouping scheme -- D -- and not to the variables 
of interest in aggregate analysis -- the X matrix. 

The Generalized Least -Squares Approach 
to Aggregation 

In this section, if we start with (1) of the 
previous section the grouping of observations in- 
to p groups and taking means yields (Johnston, 
pp. 228 -241): 

= + (12) 

Then the ungrouped data are related to the aggre- 

gated in these forms, 

= Gy (13) 

X = GX (14) 

= Gu (15) 

.with G as the grouping matrix of On x n). The 

form of G is, for instance, 

1/1 1/1 0 0 0 0 ... 0 

G = 1/2 1/2 1/2 1/2... (16) 

...1/p 

While E(a) = o it is also noted that 

) = (17) 

which means that the estimators will be unbiased 
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but inefficient. However, it is the case that 

E(üü') = (18) 

which is efficient. To estimated B, the genera- 
lized least squares is 

b = 1X]- (19) 

and 

var(b) = (20) 

Here, generalized least squares overcomes the 
heteroscedastic problem (17) by inserting the 
grouping factor G in (18). The expression 
(GG') -1 is actually a weighting matrix which con- 
tains the numbers in each group. Note that the 
generalized least squares estimates are not as 
efficient as the ungrouped ones. 

The R2 question may now be approached, when 
recalling fram Table 1 that R2 for equation (1) 
is 

- R2 = s's (21) 

y'Ay 

by simple reexpression. But what about the R2 
for the groups values? The R2 for equation (12) 
could be of the form 

1-R2 

where 

(22) 

- (23) 

By definition the sums of squares may be parti- 
tioned: 

with 

y'Ay = (GG')-1Á5' + 

y* = y - 

(24) 

(25) 

referring back to equation (3). Thus, it must 
be the case that 

y'Ay -11i (26) 

and we can see that the reduction of the denomi- 
nator for between groups sum of squares is again 
a function of D -- the relationship of the group- 
ing factor with y. As the association of y with 
D increases, the between sum of squares decreases 
- i.e., R2 for between groups must increase. 

An Example of the Effect of Aggregation on R2 

Of substantive interest in political socio- 
logy has been voter participation in the elec- 
toral process. In light of the traditional demo- 
cratic norms concerning the importance of citizen 
participation, researchers have, through the 
years, focused on this problem. Though much of 
what is known about the factors influencing voter 
participation derives from survey, micro -level 



data, there have been numerous occasions when 
aggregate data have been employed to investigate 

voting behavior (Alford and Lee, 1968). Studies 

using aggregate data have most often used corre- 

lational methods, seldom attempting to estimate 

regression coefficients. This example will 
illustrate grouping data by census blocks and 

tracts (a common procedure in macro -level voting 
studies) as it compares with ungrouped responses. 

Kim, Petrocik and Enokson (1975) treat the pro- 

blems of analyzing voting with aggregate data 

where micro and macro data are combined and sys- 

tematically measure the interaction. 

The model of voter participation used in 

this example is drawn from the literature based 

on micro-level survey data. It is hoped that 
this will lessen the likelihood of misspecifica- 
tion and thus avoid that additional handicap. 
Ben -Sira (1977) has suggested a model based on a 

thorough review of the previous research on vot- 
ing and notes that there has been shown to be a 
strong association between socio- economic status 

and voting. The trend is for individuals to have 

a higher propensity to vote, given a higher 

social status. The components of the model are 
presented in Table 2. 

The data is from a one percent survey of 

Atlanta and suburban Fulton County conducted in 

1976 and yielding over 7,000 respondents. The 

substantive model and this data provide a back- 
ground to test the methodological problem of the 

effect of grouping on correlational measures 
such as the R2. Incomplete data were accounted 

for by the mean substitution technique which 
does not bias the regression coefficients but 
does lower variance and efficiency. No missing 

data cases for the dependent variable were in- 

cluded. 

The illustration is in the form of three 

regression analyses: one each of three levels 
of aggregation -- census blocks, tracts, and 

total respondents. The specification remained 

the same for each level at which the data were 
grouped. The model for the grouped data was that 

of equation (12) and was estimated as a special 

case of generalized least squares, weighted 
least squares. Due to the limitations of the 

Statistical Package for Social Sciences (SPSS) 

software, a dummy constant term had to be in- 

cluded in grouped equations along with the actual 
constant term, but this does not affect these 

examples. The ungrouped data was simply estimat- 
ed by the model in equation (4). The R2 in the 

micro-level specification was found to be .14, a. 

modest coefficient but not unrespectable, given 

that voting was coded as a dicotamy with having 

voted in the previous five years as a "1" and 

not having voted as "0 The strongest variable 

was the years of schooling. 

The grouping by census blocks resulted in 
2867 blocks for 7018 individuals and, as shown 
in Table 2, the resulting R2 was .18, indicating 

a modest increase from the total R2 of .14. The 

partitioning of sum of squares is presented in 
Table 3 and indicates that the within groups R2 
is .12, suggesting that controlling for the 
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effects of grouping by blocks has a slight but 
measurable impact on the specification. Addi- 
tionally, this implies that grouping by census 
blocks could possibly be done for purposes of 
confidentiality or if there were need to reduce 
data components (see Feige & Watts, 1972). 

As is shown in Table 2, the data grouped by 
census tracts were analyzed. The partitioning 
of the sum of squares is given in Table 3. The 
R2 for total, and also for within census tracts, 
was .14, however, the between census tracts R2 
was found to be .60 -- a clear example of the 
effect of grouping on the R2. Here the increase 
in R2 was due to the association between census 
tracts (the D matrix), as a proxy measure of 
contextual factors, with the dependent variable 
(the y vector). In addition, it should be noted 
that while the regression estimators were not 
seriously affected by the grouping by tracts, 
the standard errors of estimators were inflated 
along with the standardized regression coeffi- 
cients (ß). Thus, the typical measures of the 
importance of the regression were altered to a 
considerable degree by aggregation effect. But 
to restate, for the researcher who is hoping to 
estimate the micro specification with aggregate 
data, the R2 and standardized coefficients are 
to a large degree a product of the grouping 
effect itself rather than the substantive in 
dependent variables. 

Summary and Discussion 

The purpose of this paper has been to 
approach the problem of the effect of grouping 
on R2 from the analysis of covariance approach, 
and relate it to the clustering approach of 
generalized least squares. While through the 
years there have been warnings against over- 
reliance on R2 with grouped data, there con- 

tinues to be statements such as: 

An additional motivation for using 
grouped data, however, is that even 

with sophisticated operational defi- 
nitions of income and prices, these 
explanatory variables alone appear 
to "explain" only a small part of 
the variations in demand for speci- 
fic goods and services in individual 
household data. Grouping observa- 

tions by the independent variables 
considerably increases the "explana- 
tory power" of the estimating equation. 
(Michael and Becker, 1973, pp. 379-380). 

It is hoped that the above authors were not 
seriously claiming that grouping increased the 

substantive "explanatory power" of their speci- 

fication. What, in all likelihood, occurred was 

an artifactual increase in R2 that the grouping 

factor induced. It should be noted that there 

does exist the possibility of an actual "aggrega- 

tion gain" when, for instance, the micro equation 

is misspecified and the grouping factor (the D 

matrix) helps correct the poorly specified micro 

model (see Irwin and Lichtman, 1976, pp. 423 -433). 
A similar point has been made by Hanuschek, 
Jackson, and Kain (1974). 



The generalized least squares perspective 
can also be an aid in investigating both temporal 
and spatial autocorrelation. The G matrix can 
be used to correct for such misspecifications as 
heteroscedasticity and autocorrelation. Granger 
and Newbold (1974) have cautioned that high R2 
may be generated by a misspecified temporal auto - 
correlation structure. Spatial autocorrelation 
can result in inefficiency of the estimates of 
cross sectional studies (Lebanon and Rosenthal, 
1975; Cliff, Haggett, Ord, Bassett and Davies, 

1975). 

The researcher cannot expect the R2 deter- 
mined from grouped data to be a robust measure 
for use in evaluating models unless the grouping 
procedure is random with respect to the dependent 
variable. The R2 "inflation problem" is actually 
a specification issue where methodology and tech- 
nique are, at best, only partial factors in a 
more complete solution. 
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Table 2 

COMPARISON OF REGRESSIONS FOR MICRO -LEVEL DATA WITH CENSUS BLOCK AND TRACT AGGREGATIONS 

Dependent Variable: 

Micro -Level 

Voted in Previous Five Years 

Macro-Level 

Standard 
Error of 

Census Blocks Census Tracts 
Standard 
Error of 

Standard 
Error of 

Independent Variables Estimator Estimator Estimator Estimator Estimator Estimator 

Schooling (years) .040 .0016 .32 .040 .0024 .35 .065 .010 .74 
Age (10 year units) .038 .0032 .15 .033 .0046 .13 .045 .022 .16 
Income ($10,000 units) .022 .0050 .052 .031 .0079 .074 .054 .034 .16 
Race (White) -.029 .011 -.033 -.034 .015 -.043 -.081 .033 -.19 
Political Efficacy -.0019 .0036 -.0058 .0053 .0293 -.023 .026 -.051 
Public Interest .0068 .00062 .13 .0062 .00096 .12 .0074 .0045 .13 
Governmental Salience (high or low) .019 .010 .021 .022 .016 .024 -.073 .066 -.077 
Constant .017 .019 .0095 .22 .14 .11 
Dummy Constant -.012 -.15 

R2 .14 .18 .6o 

Standard Error of Estimate .41 .34 .11 

N 7018 2867 137 

*Not needed in the micro -level specification 



Table 1 

ANALYSIS OF COVARIANCE APPROACH TO GROUPED DATA 

Source of 
Variation Residual Sum of Squares 1 -R2 

Between e'e = y'y - â'D'y - ß'X'y y'y - &'D'y - 
y'Ay 

Within s's - e'e = 'D'y + 'X'y - g'X'y 'D'y + ß'X'y - 
y'Ay 

Total s's = y'y - ß'X'y y'y - 

y'Ay 

Table 3 

OF GROUPING BY CENSUS TRACTS AND BLACKS 
ON SUMS OF SQUARES FOR VOTING MODEL 

Sums of Squares 

Source of Variation R2 Regression Residual Total 

Between Census Tracts 2.39 1.59 3.97 .60 

Within Census Tracts 189.56 1183.77 1373.34 .14 

Total 191.95 1185.36 1377.31 .14 

Between Census Blocks 71.82 333.72 405.54 .18 

Within Census Blocks 119.82 851.64 971.77 .12 

Total 191.94 1185.36 1377.31 .14 
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